Tools of the Imagination

For most people, the word “architecture” connotes a physical product—a building or perhaps a group of buildings representing a particular culture or historical period. But architecture is also a process. Designing a building requires frequent testing of specific ideas, followed by adjustments to the design, followed by more testing. Through a combination of logic, intuition, application of technical knowledge, occasional visionary leaps, and old-fashioned trial and error, architects gradually develop plans that lead to the physical manifestation of their creative work.

Like many other processes, architecture requires tools, and throughout the history of design, specialized tools have been developed to address those needs, while other, common tools have been appropriated and sometimes adapted for architectural purposes. In the National Building Museum’s current exhibition, Tools of the Imagination, we explore the somewhat hidden history of the various devices that allow architects to express their ideas to the general public, to clients, to review agencies, and ultimately to the people who will build the structures.

Featuring hand drawings, drafting tools, computer renderings, and animated demonstrations of computer-aided design software, the exhibition appeals to many different audiences.

The curatorial team for the exhibition tracked down a number of fascinating artifacts, such as a volutor—a remarkably specialized device from the mid-19th century that enabled architects to draw the spiral “volutes” on the capital of an Ionic column. There is also an early 19th-century brass ellipsograph, which is notable not only for its mechanical ingenuity (it was used to draw accurate elliptical shapes), but also for its delicate beauty. Complementing these practical but elegant instruments are computer monitors running astonishingly complex design software, revealing how contemporary architects are exploiting electronic technology to produce evermore sophisticated representations of their ideas.

This issue of Blueprints features two articles inspired by the Tools of the Imagination exhibition. Susan Piedmont-Palladino, who served as guest curator for the exhibition in cooperation with curatorial associate Reed Haslach, offers an entertaining history of erasing, a vital but easily overlooked aspect of the design process. Kevin Klinger describes how cutting-edge architects are already exploring the next step in digital design, using programs that feed design information directly into the manufacturing and construction processes. Both articles illuminate the fact that, while tools are a means to an end, they also often entail interesting stories in themselves.

P.S. I am also pleased to report that, thanks to the financial support of Autodesk, Inc., the Museum and Princeton Architectural Press will be co-publishing a book based on Tools of the Imagination. The book, which is expected to be published in spring 2006, will be available in the Museum Shop and elsewhere.
The Invisible History of Erasing

by Susan Piedmont-Palladino

Susan Piedmont-Palladino is an architect and associate professor of architecture at Virginia Tech’s Washington/Alexandria Architecture Consortium. She served as guest curator for the National Building Museum’s exhibition Tools of the Imagination.

Around 1767, instead of the Library of Congress, Frugal architect and writer John Ruskin’s Elements of Drawing pointed out a century later, but it must have made for a messy drafting room. The realm of the visible. But another set of tools does just the opposite; they make things disappear, either permanently or provisionally. It has not always been easy to remove a line from a sheet of paper, and the quest for a better eraser has involved an unlikely cast of characters. Joseph Priestley, Edward Nairne, Charles Goodyear, Priestley had to draw his own illustrations, and while teaching himself the principles of drawing, realized he needed to know something about erasing. Allegedly grabbing a block of caoutchouc instead of a piece of bread, he found he could use it to “rub out” his mistakes. Calling the substance “rubber,” he gave drafters everywhere an indispensable tool, and saved future generations from having to devise verb forms of caoutchouc.

It was instrument maker and inventor Edward Nairs, however, who saw a business opportunity. He surmised that it was not only amateurs like Priestley, but professional drafters, as well, who might like an easy way to reconsider their lines. Nairs, whose discoveries and inventions rivaled his contemporary Priestley’s, began selling rubber erasers. While better tools does just the opposite; they make things disappear, either permanently or provisionally. It has not always been easy to remove a line from a sheet of paper, and the quest for a better eraser has involved an unlikely cast of characters. Joseph Priestley, Edward Nairne, Charles Goodyear, were among the scientists and inventors of the last two centuries who have contributed to the invisible history of erasing. Erasing the Undelivered Way: An architect in the 17th century who wanted to make changes to his sketch would have had limited options. Had he drawn in ink, he would have picked up a sharp knife and scraped away the lines, being careful not to damage the paper. Had he drawn in pencil, he would have crumbled some bread and gently ground the graphite away. Not only was this a waste of bread, as the ever-frugal architect and writer John Ruskin pointed out a century later, but it must have made for a messy drafting room. The 18th century was a restless time, full of discovery and invention, so it is not surprising that the Age of Enlightenment also gave us a better eraser. Joseph Priestley, better known for identifying the element oxygen, is credited with discovering that what was then known as caoutchouc, the material that actually comes from the rubber tree, could be used as an eraser. While writing a version of his History of the Present State of Electricity around 1769, Priestley had to draw his own illustrations, and while teaching himself the principles of drawing, realized he needed to know something about erasing. Allegedly grabbing a block of caoutchouc instead of a piece of bread, he found he could use it to “rub out” his mistakes. Calling the substance “rubber,” he gave drafters everywhere an indispensable tool, and saved future generations from having to devise verb forms of caoutchouc.

Priestley had to draw his own illustrations, and while teaching himself the principles of drawing, realized he needed to know something about erasing. Allegedly grabbing a block of caoutchouc instead of a piece of bread, he found he could use it to “rub out” his mistakes. Calling the substance “rubber,” he gave drafters everywhere an indispensable tool, and saved future generations from having to devise verb forms of caoutchouc.

It was instrument maker and inventor Edward Nairne, however, who saw a business opportunity. He surmised that it was not only amateurs like Priestley, but professional drafters, as well, who might like an easy way to reconsider their lines. Nairne’s, whose discoveries and inventions rivaled his contemporary Priestley’s, began selling rubber erasers. While better tools does just the opposite; they make things disappear, either permanently or provisionally. It has not always been easy to remove a line from a sheet of paper, and the quest for a better eraser has involved an unlikely cast of characters. Joseph Priestley, Edward Nairne, Charles Goodyear, were among the scientists and inventors of the last two centuries who have contributed to the invisible history of erasing.
In 1963, while electric erasers whirred on Mylar, the newly developed polyester drawing film, a young doctoral candidate at MIT was teaching a computer to draw. The TX-2 that Ivan Sutherland used to develop his groundbreaking graphic program "Sketchpad" was hardly faster than a skilled draftsman, but the impending revolution in drawing, and erasing, was just becoming clear. Sutherland wrote in his dissertation: “It has turned out that the properties of a computer drawing are entirely different from a paper drawing not only because of the accuracy, ease of drawing, and speed of erasing... but also primarily because of the ability to move drawing parts around on a computer drawing without the need to erase them.” Move lines around on the surface of a drawing, without having to erase them? That would have sounded like magic to the architects whose company is still headquartered where it was founded in 1932, in Racine, Wisconsin. Goodyear, another familiar name from the early 20th contributed more power. The electric eraser and a thin metal eraser shield, an impregnated chucks in a Dremel electric hand-held power tools. With chemically canizing process which stabilized rubber, making possible the production of both automobile tires and erasers. Twenty years peers were reaching the limits of speed in technical pens. Drawing quickly and precisely, and erasing and redrawing equally precisely, and erasing and redrawing equally, and of course the little pink one crowning many of his vast pencil trove. Less familiar are a few long, skinny tubular chucks for use in an electric eraser.

Computer-Aided Drawing/Drafting, or CAD, software has an array of commands and buttons for various degrees of obliteration, each with an icon chosen to express most succinctly the action involved. SketchUp, the user-friendly three-dimensional drawing program by @Last Software, uses the familiar image of Hyman Lipman’s invention as the icon for its erase button. SketchUp’s erase even behaves a bit like its imagemaker; it can be used to rub out, soften edges, or smudge lines, just like the eraser on the end of a real pencil. Lipman’s pencil—what a software developer might now call a line tool with integrated delete function—was ultimately deemed to be insufficiently inventive to deserve its patent, but it has achieved electronic immortality as the iconic image of creativity and its reconsiderations.

AutoCAD uses this same icon for the simple “erase” command, but as a software suite for complex design and production projects, AutoCAD has many more steps between making a line and deleting it. Lines and shapes can be erased, copied, moved, and offset; entire drawings can be filed, purged and deleted. Even erasures can be unerased with the OOPS command. Perhaps in a nod to the seriousness of architectural practice, the word itself, “OOPS,” does not appear on screen. Instead, the architect has to confess his mistake by typing “oops” in the “command” line at the bottom of the screen. As the software developed, AutoCAD users began to ask for an “extended OOPS” to allow the retrieval of more than just the most immediately erased elements. The “help” section does caution the user, however, that not even an extended OOPS can retrieve a purge.
The Invisible History of Erasing

Autodesk’s new software, Revit, takes a different approach to the graphics on the screen. Referred to as Building Information Modeling software, Revit produces not so much a drawing of a building as a virtual construction. An architect working in Revit still needs to be able to modify or eliminate elements, but since it is not really a drawing, an eraser does not seem to be quite right. Modifying a virtual construction requires a virtual sledgehammer so Revit has a hammer as its icon for virtual demolitions. A click on the “demolish” icon converts the cursor itself into a hammer, and any element touched by the hammer turns into dotted lines. Or is it virtual dust? A click on the “undo” icon restores the element to solidity, which neither the king’s horses nor his men could accomplish for Humpty Dumpty.

Operating systems often have a desktop icon for “trashcan” or “recycle bin,” yet most CAD software does not include a similar location within the program for elements that may be interesting but are not immediately useful. What can an architect do with a beautiful stair-case that doesn’t fit in a newly downsized room? Or a stone fireplace too expensive to redo a section of a canvas, she was hoping to conceal her mistakes, but there are architects who use the substance for precisely the opposite reason. Now, correction fluid comes in a pen-like tool, which is more in keeping with the way architects draw than the painterly fluid. The BIC correction fluid is where those items in a project that have been revisited, moved, and otherwise exiled, but that the design team may not want to delete just yet.

Faster, easier, more accurately… these have been the guiding values driving innovation in both drawing and erasing technologies. Even retracing earlier design decisions has been made more efficient; Mirroration lets users revisit the design history of an element, with each version listed in chronological order. But speed and accuracy are more important in some phases of design than in others and the design history of an element can sometimes be represented on a single drawing.

Billie Tsien, of TWBTA, warns that trouble can hide in a computer drawing. The clean screen never shows the distress that paper shows when it has been scraped, erased, and drawn over. Borrowing a tool more common to pre-computer office work, TWBTA regularly uses correction fluid not so much to erase elements, but to draw attention to the areas that need work. Cor rection fluid was developed to be invisible, but architects have a long tradition of appropriating tools made for one purpose and putting them to use for another. In this case, Bette Neumann Graham, better known as the mother of musician Mike Nesmith (yes, the one from the 1960s pop group The Monkees), was also the proverbial mother of invention as a post-war secretary. Thinking like a painter who wants to redo a section of a canvas, she was hoping to conceal a mistake, but there are architects who use the substance for precisely the opposite reason. Now, correction fluid comes in a pen-like tool, which is more in keeping with the way architects draw than the painterly fluid. The BIC correction, makers of Wite-Out, proudly boasts that their product “holds like a pen” for a “comfortable correcting experience.” Yet, the correcting experience is rarely comfortable. Deciding which ideas can stay and which must go is at the core of architectural judgment, and one is never comfortable doing it. Architects’ studios are stuffed with sketches of designs that never found their way into built form, but nonetheless had enough value to save them from the electric eraser, or the delete button. The eraser—along with all of its digital descendents—is the tool of re-design, as the pencil is a tool of design, letting the architect draw and re-draw toward the solution. The drawing paper or the refreshed screen may appear to be blank, but the imagination of the architect, the ultimate external storage device, is filled with all of those ideas that have been moved to the “junkyard,” “saved-as,” whitewashed, exiled to Level 63, rolled up in a tube, but never entirely erased…
Digital Technology Is Rapidly Shifting the Way Architecture is Designed and Made

Digital technology is rapidly shifting the way architecture is designed and made. With a raft of software now available for use, architects can create a digital model of a building and all of its elements, and in turn use this three-dimensional information to construct actual building components using machines driven by CNC (computer numerical control) and other advanced manufacturing techniques. Increasingly, buildings are being prefabricated within factory settings reminiscent of the automobile-, airplane-, and shipbuilding industries. Both the ways in which we think about architecture and the instruments and techniques we use to measure, observe, envision, represent, and fabricate architecture, are changing dramatically as we retool all of the mechanisms for developing and producing a built work. We have perhaps arrived at a new “Architecture Machine,” slightly different from the one suggested by Nicholas Negroponte in his 1993 book by the same title.

In the recent book Architecture in the Digital Age: Design and Manufacturing, editor and author Frank Kolaric asserts, “Digital technologies are enabling a direct correlation between what can be designed and what can be built, thus bringing to the forefront the issue of the significance of information, i.e. the issues of production, communication, application, and control of information in the building industry. By integrating design, analysis, manufacture, and the assembly of buildings around digital technologies, architects, engineers, and builders have an opportunity to fundamentally redefine the relationships between conception and production. The currently separate professional realms of architecture, engineering, and construction can be integrated into a relatively seamless digital collaborative enterprise…”

Technologically driven change has always been a catalyst for new ideas in architecture, and today, digital technology is a key agent for innovation in design and construction. The central requirement is the clear, reliable, and consistent exchange of information among all parties involved in creating a given project. Digital information was fed directly into a digitally controlled two-dimensional cutter to produce the zinc panels that line the building’s facades, creating a smooth transition between the design and the fabrication process. The cladding of the Porter House Condominium, a recent project in New York by SHoP Architects, is an innovative example of this in practice. Digital information was fed directly into a digitally controlled two-dimensional cutter to produce the zinc panels that line the building’s facades, creating a smooth transition between the design and the fabrication process. The cladding of the Porter House Condominium, a recent project in New York by SHoP Architects, is an innovative example of this in practice. Digital information was fed directly into a digitally controlled two-dimensional cutter to produce the zinc panels that line the building’s facades, creating a smooth transition between the design and the fabrication process. The cladding of the Porter House Condominium, a recent project in New York by SHoP Architects, is an innovative example of this in practice.

Once the design information is ready for translation into physical form, the digital files used to generate the project are then prepared so as to drive the fabrication process. The cladding of the Porter House Condominium, a recent project in New York by SHoP Architects, is an innovative example of this in practice. Digital information was fed directly into a digitally controlled two-dimensional cutter to produce the zinc panels that line the building’s facades, creating a smooth transition between the design and the fabrication process. The cladding of the Porter House Condominium, a recent project in New York by SHoP Architects, is an innovative example of this in practice. Digital information was fed directly into a digitally controlled two-dimensional cutter to produce the zinc panels that line the building’s facades, creating a smooth transition between the design and the fabrication process. The cladding of the Porter House Condominium, a recent project in New York by SHoP Architects, is an innovative example of this in practice. Digital information was fed directly into a digitally controlled two-dimensional cutter to produce the zinc panels that line the building’s facades, creating a smooth transition between the design and the fabrication process. The cladding of the Porter House Condominium, a recent project in New York by SHoP Architects, is an innovative example of this in practice.

Innovative building fabrication techniques (i.e., the processes of manufacturing the various physical components of buildings) that were once considered at the experimental edge are becoming commonplace and are changing the definition and organization of architectural practice. Increasingly, the design process entails a kind of “conversation” between digital visualization and digital production. The project is developed digitally and enters multiple feedback loops from concept through final construction.

Once the design information is ready for translation into physical form, the digital files used to generate the project are then prepared so as to drive the fabrication process.
Varying degrees of digital fabrication are employed in SHoP's innovative practice. The recently completed Camera Obscura is an example of a 100 percent digitally fabricated project. Rather than using the traditional plans, elevations, and cross-sections to explain how to assemble the building, SHoP used three-dimensional diagrams directly generated from the computer model to explain where each assembly was located in the completed structure. At the 2003 ACADIA conference at Ball State University, SHoP partner Chris Sharples likened this innovative process of assembly to a “very large model airplane kit, just like when you were a kid.”

Retooling Communication

Exchange of information is central to the building enterprise. Communication and collaboration between architects, manufacturers, fabricators, material suppliers, and contractors is key to the success of digitally-driven architecture. All participants must be willing to collaborate in order to benefit from this exchange, and therefore, architected must engage in new methods of communication. The medium of exchange is most frequently a virtual environment (for communication, modeling, and manufacturing). This “tool of the imagination” is literally an entire digital platform for information exchange that traces a project from conception through fabrication and management of assembly. The important question remains, how will we participate in the exchange? The roles of the participants are still in flux. New legal devices and contractual arrangements in the building enterprise must be delineated in order to facilitate these innovative practices. For now, the MIT Stata Center in Cambridge, Massachusetts, designed by Gehry Partners (as seen in the exhibition Tools of the Imagination), serves as an excellent case study of digital exchange occurring at a significant number of levels throughout the design and construction processes. The participants in this innovative digital exchange included Gehry Partners working with CATIA software and Gehry Technologies for the computer modeling, Skanska International for the construction, A. Zahner for fabrication of the metal skins, CAPCO for the structural steel, John A. Martin for the structural engineering, and others. The digital master model was at the center of this exchange with all of the participants weighing in at various stages.

Retooling Software

SmartGeometry, Revit, Digital Project, CATIA, Solidworks, Rhino3D, Maya, Pro Engineer, FormZ, SurfCAM, MasterCAM are just some of the new modeling and machining software products that are quickly becoming part of a standard toolkit for digital practices. Over the years, various software packages have become more mutually transparent, thus facilitating the import/export of data. In fact, most serious digitally-driven architects end up developing their own particular software and/or code.

Retooling Representation

In the late 20th century, prominent “paper architects”—those known primarily for their ideas and proposals, rather than completed buildings—relied heavily upon experimentations in representation. A number of these “paper architects” such as Daniel Libeskind, Zaha Hadid, Rem Koolhaas, Peter Eisenman, Thom Mayne, and Bernard Tschumi, et al. are now actively engaged in building, leading the profession, and demonstrating that experimental representation methods they used in the past are today directly informing their design processes in their built work. Similarly, digitally-driven architecture today entails many experiments that suggest promising new directions for the future of design. Innovative representational devices are evolving which allow new forms of organizing and visualizing complex data—a necessity for directing machines to follow multiple levels of operations during the fabrication process. These representational devices reveal relationships that are traditionally considered to be exclusive to the original conception of the project, and provide visual feedback during a design process. Concepts of efficiency, nesting, unfolding, surface optimization, and material tolerances all grow out of the need to direct machines to cut, bend, and fold precise physical shapes. However, these representations also inform the design process as feedback for new design iterations before final fabrication.

Retooling Observation

Observations of existing places can be recorded visually through sketches, constructed perspectives, camera obscura renderings, photography, and video, with dramatically different results. Today, when we observe the natural world through a digital lens, it can alter our perception of a place, and can even augment our understanding of it. Digital devices reveal layers of information concealed within the captured scene. To see a place clearly, one must open one’s eyes, ask oneself questions, and distill what the eyes see. To know a place truly, one must explore and analyze what the eyes don’t see. Digitally augmented observation techniques—such as motion capture, aerial digital photography, filtered video/images, digital collage, and multimedia imaging—can be used to reveal hidden layers and produce analyti- cal narratives of our visual observations. As William Mitchell outlined during the nascent of digital image production in his book The Reconfigured Eye: Visual Truth in the Post-Photographic Era, [digital images] can be used to yield new forms of understanding, but they can also disturb and disorient by blurring comfortable boundaries and by encouraging transgres- sion of rules on which we have come to rely. Augmented visions render observa- tion of the world in new terms, and represent new techniques for digitally attuned practices.

Retooling the Future: A New Architecture Machine

The Association for Computer Aided Design in Architecture (ACADIA) was formed in the early 1980s for the purpose of facilitating communication and critical thinking regarding the use of computers in architecture, planning, and building science. To understand how digital tools have evolved, it is informative to examine the shifts of topics discussed in ACADIA’s conferences and publications as computing shifted from mainframes to PCs and software programs became ubiquitous. ACADIA themes today are about Smart Architecture [build-ings that use electronics, for example, to maximize occupant comfort and minimize...
Blueprints 1312

energy consumption) (2005), Digital Fabrication (2006, in partnership with the AIA Technology in Architectural Practice group), and Digital Discourse (2007). Scholarship ranges from computational tools to visualization, representation, observation, theory, pedagogy, and practice. It is obvious that well-developed digital skills will be absolutely necessary for future innovative design, construction, and architectural practice. To develop a digital acumen for innovative design, construction, and architecture, one needs a strong and broad skill set. We can no longer think about CAD-related software in the simple terms we have known; rather, we must learn a fleet of software, coupled with an armada of digital skills, and still retain critical objectivity regarding each program’s value and limitations. The list gives the reader a sense of the broad range of distinct skills that now comprise true digital literacy.

New non-traditional programs are emerging, such as the Product-Architecture Lab at Stevens Institute of Technology, directed by John Nastasi. Traditional architecture programs as well are evolving such as illustrated in this article. Significant research is occurring at places like Columbia University with Cory Clarke and Phillip Anzalone. Ball State University is exploring the potential for a post-professional degree in digital fabrication as well as a digital fabrication Master of Architecture concentration linked to other concentrations in sustainability, etc. Countless other programs are presently exploring potentials of digital fabrication within the architecture curriculum. We are just beginning to scratch the surface.

We have embarked upon a great age of architectural exploration brought on by critically examining the affects of digital tools, and the machines they control, as Wright suggested a century ago: “Who’s riddle the artist must solve if he would that art live.” This new age of exploration will significantly transform both the practice of and the thinking about architecture—indeed, digital technology has already significantly launched a retolling of the way architecture is conceived and buildings are created. •

Consortium of University System of Maryland.

Construction Watch Tours — Stepping into the Building Process by Paul Killmer

The National Building Museum puts its mission to "explore the world we build for ourselves" into literal practice with its distinctive and popular Construction Watch Tours. A hallmark of the Museum’s programming since the institution’s beginning, these tours provide members an up-close understanding of the construction and design of many of Washington’s fascinating building projects—from bridges and embassies to museums and condominiums. Few institutions in the U.S. offer such a regular and varied array of construction tours.

Usually offered twice a month, Construction Watch Tours normally last between two and three hours. Each tour is limited to approximately 25 Museum members. Often, the projects visited aren’t open to the public even after they are completed. Because the tours are led by developers, architects, and contractors, they offer direct access to key figures who are shaping our built environment.

Construction Watch Tours highlight special construction methods and innovative technologies used in the building process. Participants touring the Music Center at Strathmore in Bethesda, Maryland, for instance, learned about that building’s huge glass curtain wall. Some tours have focused on “green” building strategies, while others have examined preservation of historic buildings. Early this year, the Museum organized an all-day bus tour to James Madison’s Montpelier, in Virginia, for a look at the complicated preservation efforts underway there. This summer, members toured the restoration of the historic residence of the Turkish ambassador.

Tours have included visits to the new embassies of Nigeria, Slovenia, Ethiopia, Switzerland, and Ivory Coast. Members have received special access to the National Museum of the American Indian and the U.S. Botanic Garden on the Mall and to the National Museum of the Marine Corps in Quantico, Virginia. Other tours have focused on sustainable design projects, including the Greenpeace USA headquarters and the offices for Environmental Defense. The Museum also chartered a boat for a river tour of the massive Woodrow Wilson Bridge, now under construction in Virginia. Construction Watch Tours are a valuable benefit of membership in the National Building Museum. If you are not already a member, join today, so that you can enjoy these ongoing opportunities to get behind the scenes at major construction projects in the Washington area. •
Nearly 900 people filled the National Building Museum’s elegant Great Hall on June 3 to celebrate Forest City Enterprises, recipient of the Museum’s Honor Award for 2005. Forest City, a major real estate development firm headquartered in Cleveland, was awarded the award for its long-standing commitment to revitalizing American cities, its growing focus on sustainable design and planning, and its track record in developing successful public-private partnerships to create thriving communities across the United States. Remarkably, since its founding in 1921 as a lumber company, Forest City has remained under the leadership of the interrelated Batters, Shafran, and Miller families, who have been widely recognized not only for their business acumen, but also for their philanthropic endeavors.

While the Honor Award presents an opportunity for the Museum to pay tribute to those who have made significant contributions to the built environment, it is also the centerpiece of the Museum’s annual fundraising activities. This year, the gala brought in $1,000,000, breaking the seven-figure threshold for only the second time in the award’s 28-year history. These funds help to make the Museum’s exhibitions and education programs possible, and the board and staff express their deep gratitude to all who contributed to this year’s event.

2005 Honor Award Gala a Big Success
The Museum thanks the following individuals, companies, associations and agencies for gifts of $250 or more received from November 2002 to May 2003. These generous gifts provide essential support to the Museum’s exhibitions, education programs, and endowment funds. Contributions listed below are in partial fulfillment of larger pledges.

$50,000 and above

D.C. Office of Planning
Fairfax Foundation of The Community Foundation for The National Capital Region
United Urban Enterprises
Tuner Construction Company The Wiking Turner Contracting Company

$25,000–$49,999

The Associated General Contractors of America
Vick S. and Edward P. Baas
Mr. and Mrs. Artus K. Bebchuck
Caroline and Kenneth D. Study
The Morris and Gwendolyn Calvin Foundation
Penny and Jon Cooke
The Jewish Historical Society of Greater Washington
The Martha and Bronson Ingram Foundation
Reidman, Jon J.
The American Mobile Museum Project
U. S. Department of Housing and Urban Development

$5,000–$9,999

Ms. and Mr. David Bender
Arent Fox
Terry W. Antonello
Robert H. Braunohler
Bernstein Management
A. Eugene Kohn, FAIA
James C. Cleveland
Kishimoto.Gordon.Dalaya P.C.
William C. Louie
Linowes and Blocher LLP
Karen B. Aitken
M. Howard Morse
Jamil Alibhai
Brian Aitken
Ramzan Karimi
Christine Gill
Boyd Walker

$250–$2,499

The American Institute of Architects Foundation, Inc.
Barbara Spangenberg
Joseph G. Mueser
Kelly Beery Rio Architects & Interiors
Emerson G. and Delores G. Dennis
Almas Kanini
Mr. and Mrs. Salim Juma
Mr. and Mrs. M. Arthur Gensler, Jr.
Ginnie + Parker Architects
Robert F. Landis
Kellow+Brower Architects

$100–$249

Mr. and Mrs. William N. Cafritz
The Abramson Family Foundation, Inc.
Mr. and Mrs. F. Joseph Moravec
Mr. and Mrs. John M. Ingersoll
Mr. and Mrs. Ronald I. Dozoretz
Mr. and Mrs. Gary L. Gross
Mr. and Mrs. David Bender
Mr. and Mrs. M. Arthur Gensler, Jr.
Catherine B. Reynolds Foundation
McWilliams/Ballard, Inc.
Mr. and Mrs. M. Arthur Gensler, Jr.
McKissack & McKissack
The History Channel Save our Students
The History Channel
Mr. and Mrs. Steven G. H. Lam
Mr. and Mrs. M. Arthur Gensler, Jr.
McKissack & McKissack
Mr. and Mrs. William N. Cafritz
The Christopher Companies
Mr. and Mrs.(M.) Gary L. Gross
Mr. and Mrs. M. Arthur Gensler, Jr.
M. Howard Morse
Jamil Alibhai
Brian Aitken
Ramzan Karimi
Christine Gill
Boyd Walker

Smaller contributions are listed in full in the “Gratitude Project” section. For a complete list of contributors, please visit the Museum’s website.
New Trustees

The following distinguished professionals and business leaders have recently been elected to the National Building Museum’s Board of Trustees:

WILLIAM B. ALSUP III joined Hines in 1979, and is now a senior vice president of the company, with responsibility for the development, acquisition, leasing, and management of properties in Washington, DC and along the East Coast. An active participant in Museum programs for several years, Alsup holds a Bachelor of Science in economics from Hampden-Sydney College, and an MBA from the University of North Carolina.

FRANK ANTON is president of Hanley Wood, LLC, which produces a variety of magazines, trade shows, conferences, websites, and information resources serving the residential and commercial construction markets. He formerly served as editor and publisher of Builder magazine, the company’s flagship publication. Anton is a member of the board of American Business Media and serves on the executive committee of Harvard University’s Joint Center for Housing Studies. He is a graduate of Dartmouth College and holds a master’s degree from Harvard University.

Joan Baggett Calambokidis is president of the International Masonry Institute (IMI), a labor-management trust fund that oversees training and promotion for the union masonry industry. Before joining IMI, she had a varied career in governmental affairs and public service, having served as assistant to the president and director of political affairs under President Bill Clinton and chief of staff of the Democratic National Committee. She is currently on the board of the National Democratic Institute for International Affairs, and was a member of the US delegation observing the national elections in Bosnia-Herzegovina in 1999. Calambokidis is a graduate of the University of Alabama.

MELISSA A. MOSS is senior vice president and personal investment counselor for Capital Guardian Trust Company’s Personal Investment Management division. She was previously the president and CEO of Women’s Consumer Network, a direct marketing and Internet company that she founded after a 20-year career in politics and government, including a stint as director of the Office of Business Liaison at the US Department of Commerce. One of the founders of the Democratic Leadership Council, Moss now serves on the boards of Wolf Trap and the National Partnership for Women and Families. She holds an undergraduate degree from UCLA and a master’s degree from Harvard University.

Returning to the Board of Trustees after a three-year hiatus is WAYNE S. QUIN, a partner in the law firm of Holland & Knight. Quin’s areas of expertise include land use, zoning, urban planning, building and housing codes, preservation, transportation, and other real estate matters. He recently served as chairman of Children’s National Medical Center and has been on the boards of Jubilee Enterprise of Greater Washington and the Free the Children Trust. A graduate of Vanderbilt University, he received his law degree from the University of Virginia.

PHILIPPE ROLLIER is president and CEO of Lafarge North America, the largest producer of cement and concrete in the United States and Canada and a major supplier of mineral aggregates and gypsum. He went to work at Lafarge’s Paris headquarters in 1969, and subsequently held senior executive positions with the company in the United Kingdom and Canada. In 1999, he was appointed an executive vice president of Lafarge Group. Rollier holds both an engineering degree in agronomy and an MBA from the Institut d’Etudes Politiques in Paris.

STEPHEN E. SANDHERR, chief executive officer of the Associated General Contractors of America (AGC), first joined the organization’s staff in 1984. After a brief stint in private practice with the law firm of Thompson, Mann & Hudson and as a staff attorney for the National Association of Home Builders, he returned to AGC in 1991 and was promoted to his current position in 1997. Sandherr received a B.S. in political science from the University of Scranton and a law degree from The Catholic University of America.

Mystery Building

Several different buildings have borne the same name as this structure over time. Can you identify the building, its location, and its architect? Send responses to: Mystery Building National Building Museum 401 F Street, NW Washington, DC 20001

Correct responders will be credited in the next issue of Blueprints.
We’ve been talking about it for months, and now it’s finally here—the Museum’s 25th Anniversary Bash! So grab your party hat for this silver-themed celebration sure to knock your socks off! The party on Saturday, October 29, 2005, begins at 8:00 pm with a full night of live entertainment, dancing, gourmet munchies, neon cocktails, a luxury auction and raffle, celebrity guests, noted architects and designers, and more. When the revelry ends at midnight—complete with fireworks—you could be going home with a raffle or auction win, like a vacation package, a private dinner with foreign ambassadors, a weekend getaway, items from noted architects, or even a new set of wheels! For an extra treat, support the Museum at the Minaret level and join the VIP reception, or sign on as a Tower or Spire and gain access to private lounges, get a great view from an exclusive fourth-floor balcony celebration, and take home special gifts for your guests.

Single tickets start at $75 for members ($95 for nonmembers). Higher support levels include multiple tickets and a myriad of extra benefits: Pinnacles ($245; $300 nonmembers); Minarets ($425; $500 nonmembers); Domes ($1,275; $1,500 nonmembers); Towers ($4,500; $5,000 nonmembers); and Spires ($9,000; $10,000 nonmembers). All proceeds support the Museum’s exhibitions and education programs. For more information on support levels and benefits, or to purchase tickets, call 202.272.2448, x3559 or visit www.nbm.org.

MEMBERSHIP APPLICATION

Please charge my credit card: □ American Express □ Visa □ MasterCard

Your credit card information is required to process gifts of $1,000 or more. Please include your expiration date. If you choose to pay by check, please complete the information below.

NAME

ADDRESS

CITY/STATE/ZIP

EMAIL

DAYTIME PHONE

My check payable to the National Building Museum is enclosed.

Yes, I want to become a member of the National Building Museum!

Please begin my membership at the following level:

☐ Corinthian Pillar $500 ☐ Contributing Member $100

☐ Corinthian $1,000 ☐ Family/Dual $60

☐ Sustaining Member $250 ☐ Individual $40

☐ Supporting Member $500 ☐ Senior/Student $30

NAME

ADDRESS

CITY/STATE/ZIP

EMAIL

DAYTIME PHONE

Yes, I want to become a member of the National Building Museum!

Please begin my membership at the following level:

☐ Corinthian Pillar $500 ☐ Contributing Member $100

☐ Corinthian $1,000 ☐ Family/Dual $60

☐ Sustaining Member $250 ☐ Individual $40

☐ Supporting Member $500 ☐ Senior/Student $30

NAME

ADDRESS

CITY/STATE/ZIP

EMAIL

DAYTIME PHONE

The National Building Museum is a nonprofit organization under Section 501(c)(3) of the Internal Revenue Code. Contributions are not deductible to the maximum allowable extent of the law. To obtain a copy of the organization’s most recent audited financial statements, please call 202.272.2448, ext. 3500.