CHASE W. RYND
in case you are wondering, his last name rhymes with “pinned,” and he officially assumed his new role on September 2.

The Board of Trustees and staff are highly enthusiastic about Chase, who brings both exceptional qualifications and an engaging personality to the Museum’s chief executive position.

Chase most recently served as executive director of the Frist Center for the Visual Arts, a relatively new institution in Nashville that quickly gained accolades for its high-quality programming. As the center’s founding CEO, he hired a talented and diverse staff, attracting a number of respected professionals from cultural organizations across the country. The center opened to the public in 2001 with an outstanding roster of exhibitions featuring art from around the world, which immediately established the institution’s excellent reputation with the press and the public alike.

Before taking over the Frist, Chase was executive director of the Tacoma Art Museum, another well-regarded institution. While there, he hired famed architect Antoine Predock to design a new building for the museum, which has since opened to great acclaim. Chase served two terms as chairman of the Seattle Arts Commission, and has long been active in organizations such as the American Association of Museums and the Association of Art Museum Directors. Before entering the museum world, Chase ran his own fine art photography gallery, and worked for several years in finance in New York, providing a foundation in management and business that has surely served him well in his subsequent endeavors. He earned a bachelor’s degree and pursued graduate study in international economics at Georgetown University’s School of Foreign Service, and I know he is excited about moving back to Washington after many years.

Chase’s appointment follows an extensive search, during which we interviewed a number of very impressive candidates. He received the unanimous endorsement of the search committee—all agreed that he was “a good fit” for the Museum, possessing an outstanding combination of leadership ability, vision, entrepreneurial instinct, and pragmatism. I am grateful to fellow trustees Will Miller, Jim Todd, and Bob Stern who served with me on this committee.

Ambitious yet patient, confident yet gracious, Chase brings a balanced temperament and an inspiring enthusiasm to the Museum presidency. I hope all of the Museum’s friends and supporters will have the opportunity to meet him soon.

Meanwhile, he is already forging ahead to lead us to new and evermore exciting heights. Welcome, Chase!
Rooms that Move

by Martin Moeller

The National Building Museum’s latest exhibition examines the profound but often overlooked impact of “human conveyance” systems on architecture and design. Up, Down, Across: Elevators, Escalators, and Moving Sidewalks, which will be on view until April 18, 2004, is an entertaining and informative exploration of these now ubiquitous devices, without which most modern buildings would be inconceivable. This issue of Blueprints uses the exhibition as a point of departure for a series of articles about aspects of the history and perceptions of such machines.

Up, Down, Across: Elevators, Escalators, and Moving Sidewalks is sponsored by United Technologies Corporation and its subsidiary Otis Elevator Company, which has moved people up, down, and across for 150 years.

plunging to the floor. From that moment, architects and builders had at their disposal a mechanism for safely transporting people great vertical distances, and cities would never be the same.

A few decades later in Chicago, the Home Insurance Building (1885), designed by William Le Baron Jenney, made news as the first large-scale, multi-story building—though not particularly tall by current standards—to be entirely supported by a steel frame. Freed from the limitations of masonry or cast iron construction systems, architects could now imagine buildings of seemingly unbounded height, with elevators carrying occupants to levels that would otherwise be completely impractical for human habitation. The era of the true skyscraper had dawned, and despite much doubt and hand-wringing after the destruction of the World Trade Center in 2001, that era seems far from over.

Arguably the safest mode of transportation, elevators have become incredibly sophisticated in terms of both design and technology over the past century and a half. Once rickety, utilitarian cages, elevators gradually came to be seen as unique vehicles—literally and figuratively—for design expression. The elevator doors and cab interiors in the Chrysler Building (1930), for instance, were seen as integral elements of the tower’s exuberant decorative program, and as works of art in their own right.

In The Movie Being There (1979), a character named Chance, a simpleton whose dim musings are mistaken by others for profound political commentary, is befuddled by the elevator in the mansion where he is recuperating from an accident. “This is a very small room,” declares Chance, who is played in wickedly deadpan fashion by Peter Sellers (the mansion itself is played with aplomb by the enormous Biltmore House in Asheville, North Carolina). In his extreme naïveté, Chance cannot conceive of an elevator as the one tangible element of an otherwise hidden intra-building transportation system. It is just another salon, albeit minuscule, where people stand and wait for a few moments before reentering a room they have just left, which has somehow mysteriously changed appearance in the meantime.

The humor in this modest scene derives from the innocent’s inability to see beyond the sole visible manifestation of a common but complex technological system. In somewhat similar fashion, most people routinely suspend disbelief when boarding an elevator, ignoring the mechanics and electronics that make their ride possible. Though elevator travel is now utterly routine and unremarkable, this was not always the case. Primitive versions of the elevator have existed for millennia, but it was not until 1854 that such devices became feasible for general architectural applications. In that year, at the Crystal Palace exposition hall in New York, Elisha Otis famously and theatrically stood on a wooden platform that had been hoisted into the air and ordered the cable supporting it to be cut. The safety brake he had invented caught the platform immediately, preventing Mr. Otis and his stage from plunging to the floor. From that moment, architects and builders had at their disposal a mechanism for safely transporting people great vertical distances, and cities would never be the same.

A few decades later in Chicago, the Home Insurance Building (1885), designed by William Le Baron Jenney, made news as the first large-scale, multi-story building—though not particularly tall by current standards—to be entirely supported by a steel frame. Freed from the limitations of masonry or cast iron construction systems, architects could now imagine buildings of seemingly unbounded height, with elevators carrying occupants to levels that would otherwise be completely impractical for human habitation. The era of the true skyscraper had dawned, and despite much doubt and hand-wringing after the destruction of the World Trade Center in 2001, that era seems far from over.

Arguably the safest mode of transportation, elevators have become incredibly sophisticated in terms of both design and technology over the past century and a half. Once rickety, utilitarian cages, elevators gradually came to be seen as unique vehicles—literally and figuratively—for design expression. The elevator doors and cab interiors in the Chrysler Building (1930), for instance, were seen as integral elements of the tower’s exuberant decorative program, and as works of art in
ROOMS THAT MOVE

By the 1960s, the advent of the atrium hotel provided a new opportunity—the use of glass-enclosed elevators as a kind of kinetic art, enlivening public and semi-public spaces while still providing practical inter-floor transportation. More recently, Dutch architect Rem Koolhaas, in a house for a wheelchair-bound client in Bordeaux, France (1998), designed the residence around a large, unenclosed elevator platform—in effect, the device makes traditional conceptions of separate stories meaningless, as the owner can move seamlessly through space as if all of the house’s floors existed simultaneously on one level.

Changes in elevator technology have been dramatic, as well, and seem to be—forgive the pun—accelerating. Virtually gone now are the human operators, some of whom developed an astoundingly accurate “feel” for their cabs’ mechanics. I recall one operator in the absurdly outdated building where my pediatrician had his office who would crank the elevator to full throttle and then stop it suddenly, aligning the platform precisely with the destination floor time after time. The feat was often disconcerting, occasionally gut-wrenching, but always impressive to small child and parent alike.

Acting in the operator’s stead now are computers, of course, some of which go far beyond merely managing the movements of banks of elevators. Some command centers can “learn” from movement patterns over time, and then anticipate when an elevator is likely to be needed at a particular floor. Advanced systems can even allow multiple cabs to share a track when advantageous, switching them from shaft to shaft like trains in a rail yard, or like cars switching lanes on a superhighway. As a result of such innovations, waiting times are being reduced, energy is being saved, and passengers are free to be even less aware of the technology that allows them to get from floor to floor.

Though it is indeed easy to ignore the mechanical marvels that hurtle you up and down a building, the next time you board an elevator, you might take a moment to appreciate the nuances of the experience. Riding on an elevator in a tall building can be remarkably reminiscent of attending a play—with each stop on a new floor, there is a change of scenery, and the cast of characters gradually mutates as individuals and groups enter and exit from the stage. And of course, we all know that the rules of social interaction are different inside an elevator. Passengers almost always face forward, as if they were in an automobile or on an airplane, though there really is no reason for them to do so. Indeed, in those relatively unusual elevators that have both front and rear doors, one can sometimes sense the discomfort of fellow riders, nervous that a look in the wrong direction might be taken as a form of intimidation—or a romantic advance. The most accepted behavior in elevator cabs seems to be staring at the illuminated floor numbers, as if some surprising news or visual effect might pop up at any moment. Meanwhile, the elevator itself goes calmly about its business, consistently and quietly responding to the often conflicting solicitations and demands of a multitude of users.

As a tiny sociological laboratory, a quasi-theatrical venue, a technological phenomenon, or a potentially well-designed “very small room,” an elevator can be a surprising source of intrigue and interest in one’s daily routine. Just don’t miss your floor. •

Alisa Goetz is assistant curator at the National Building Museum. She served on the curatorial team for the Up, Down, Across exhibition and edited the companion catalog.

FEAT URE

Though it is indeed easy to ignore the mechanical marvels that hurtle you up and down a building, the next time you board an elevator, you might take a moment to appreciate the nuances of the experience. Riding on an elevator in a tall building can be remarkably reminiscent of attending a play—with each stop on a new floor, there is a change of scenery, and the cast of characters gradually mutates as individuals and groups enter and exit from the stage. And of course, we all know that the rules of social interaction are different inside an elevator. Passengers almost always face forward, as if they were in an automobile or on an airplane, though there really is no reason for them to do so. Indeed, in those relatively unusual elevators that have both front and rear doors, one can sometimes sense the discomfort of fellow riders, nervous that a look in the wrong direction might be taken as a form of intimidation—or a romantic advance. The most accepted behavior in elevator cabs seems to be staring at the illuminated floor numbers, as if some surprising news or visual effect might pop up at any moment. Meanwhile, the elevator itself goes calmly about its business, consistently and quietly responding to the often conflicting solicitations and demands of a multitude of users.

As a tiny sociological laboratory, a quasi-theatrical venue, a technological phenomenon, or a potentially well-designed “very small room,” an elevator can be a surprising source of intrigue and interest in one’s daily routine. Just don’t miss your floor. •

Alisa Goetz is assistant curator at the National Building Museum. She served on the curatorial team for the Up, Down, Across exhibition and edited the companion catalog.

TWENTY-FIVE, MAY BE 75 YEARS FROM NOW—that is when some experts are predicting a space elevator could be in operation. It is not a new concept, a structure on Earth reaching into space, but it has become more realistic over the last few years. Even using the materials and methods currently suggested for the space elevator, however, the project is not feasible at present. Nonetheless, the various elements necessary to create the space elevator are being developed now, with experiments taking place all over the world.

Why would we want to build an elevator into outer space? Essentially, such a device could be used as a successor to space shuttles. Permanently in place, a space elevator could be used to funnel supplies to space.
The idea of a structure soaring into the heavens from Earth goes back at least to the writing of the Bible. The book of Genesis, chapter 11, mentions an earlier civilization that tried to build a tower to Heaven. Known as the Tower of Babel, it was said to have been built in 2100 BC and located in Mesopotamia. Undoubtedly there were other such proposals through the ages, but the first mention of this type in the modern era appeared in the late 19th century. Russian scientist Konstantin E. Tsiolkovski published a manuscript in 1895 entitled "Speculations about Earth and Sky and on Vesta." Apparently inspired by the Eiffel Tower (1889), Tsiolkovski wrote about a "colossal castle" that would be attached to a cable at 22,245 miles in the air, and orbit the Earth while remaining at the same spot (a "geostationary" orbit). Throughout the 1960s, various Russians and Americans wrote articles about space elevator-type projects, but they got little notice from the aeronautics or space engineering community. Then, in 1975, American scientist Jerome Pearson published a technical paper in the journal Acta Astronautica. It was this paper that inspired Sir Arthur C. Clarke to write his novel The Fountains of Paradise (Harcourt Brace Jovanovich, 1975), which brought the concept of the space elevator to the attention of the world.

In 2000, NASA released Space Elevators: An Advanced Earth-Space Infrastructure for the New Millennium, a publication describing how a space elevator might work. A base tower, 31 miles high, would be located somewhere in the waters along the equator. Mathematical calculation has established the necessary height of the tower, and an equatorial area is desired because it suffers almost no hurricanes or tornadoes, and it aligns properly with geostationary orbits (objects directly overhead). Attached to the top of the tower are cables, stretching a total length of 92,000 miles, that would serve as elevator tracks. In order to keep the entire system from tumbling to the ground, a large counterbalancing mass in space would be attached to the end of the cables. The likeliest candidate for this job so far is an asteroid that would be moved into place and maintain an orbit complementary to the Earth’s. On one end, the Earth’s gravitational pull, and on the other end, the outward centrifugal acceleration would keep the cables under tension. Elevators would then climb the tracks, could stop at stations on various levels, and use momentum from the climb to launch into space toward different destinations.

According to NASA there are five technological hurdles that science must overcome before the space elevator can become a reality. The first is developing a high-strength material for the cables. The strongest materials in existence today, like steel and diamonds, do not have enough tensile strength to support the system’s weight. The solution is carbon nanotubes, defined by the About.com article as “tiny, hollow cylinders made from sheets of hexagonally arranged carbon atoms exceeding [ing] the tensile strength of steel by at least a factor of ten.” The problem right now (besides the $500-per-gram cost of the material) is that researchers have not been able to create a tube longer than a few micrometers. However, given the speed at which research is progressing, as the About.com article suggests, the cost of nanotubes could be reduced to a few cents a gram within five years.

The second delay in the development of a space elevator is a lack of knowledge and experience with tether technology in space. Tether technology is defined by the HowStuffWorks Web site as “long cables that can transfer momentum from one object to another.” Scientists know how tethers behave on Earth, and how short tethers behave in space (they are currently used to attach astronauts to the space shuttle during space walks). However, those tethers need to be tens of thousands of miles long, raising questions about deployment and control of long structures.

The third technological hurdle to overcome is the introduction and use of lightweight, composite structural materials on the base tower—and in the construction industry at large. Currently, the tallest structure on Earth is a television transmitting tower near Fargo, North Dakota, but at 688 yards (659 miles) it is a
SPACE ELEVATORS: FROM 20TH-CENTURY DREAM TO 21ST-CENTURY REALITY?

FEATURE

By John King

The Endless Conveyor

Below left: An escalator at Harrod's in London, 1899. Courtesy Company Archive Harrods Ltd.

The Endless Conveyor, as Colorado Rockies fans streamed from Coors Field after a fireworks show, a three-story escalator gave a traumatic lurch and picked up speed. People spilled downwards, and 35 were sent to hospitals with a variety of injuries including broken bones. The incident made news across the country.

What triggered such attention wasn’t the amount of damage—nobody died—but the man-bites-dog quality of the incident. Escalators are like air-conditioning; the background fabric of modern life. They’re not supposed to call attention to themselves—certainly not by sending people off in all directions.

In the process of being ubiquitous and essential they play a subtle role: they shape our perception of cities and space and movement itself. Think of the first time you entered some new part of a city by escalator, rising up to a framed view of urban life. Or that way that an escalator allows you to drift placidly through a tumultuous mall, bathed in the glamorous racket of consumerism while moving not a muscle.

“No invention has had the importance for and impact on shopping as the escalator,” is the emphatic verdict of The Harvard Design School Guide to Shopping, a publication of the Project on the City that is overseen at Harvard by no less a self-appointed cultural arbiter than Rem Koolhaas.

And if that statement seems overstated—a typical bit of Koolhaasian bombast—just look back on the role that escalators have played in shopping. The prototype was patented by Jesse W. Reno in 1892 as “a new and useful endless conveyor,” and within a decade they were the norm as retailers sought to emulate, on a more modest scale, the upward climb of office buildings. They took shoppers into the highest reaches of Bon Marché in Paris, far cry from the 31 miles that would be necessary for the base tower. Though existing materials could build a structure several miles tall today, the cost would make the project prohibitive.

The fourth impediment to the space elevator is the development of high-speed electromagnetic propulsion for mass-transportation systems, launch systems, and high-velocity launch rails. The idea is to use maglev (magnetic levitation) technology to run the elevators. Using maglev for transportation has been discussed for over 100 years, but the first commercial maglev train did not make its test debut until 2002 in China. Just as the trains are designed to hover on a magnetic cushion of air over the tracks, the elevators would never touch the cables, reducing wear and eliminating friction, and enabling speeds of up to 310 mph. However, this technology has never been employed in a vertical application.

The final element that must be developed is transportation, utility, and facility infrastructures to support space construction. Once again cost becomes the main issue. There must be money to support these initiatives, and the return on the initial investment would be a long way off. In writing for the Space.com Web site, Leonard David states that budget estimates for the beginning of the construction process are just under $10 billion. So will the space elevator become a reality within this century? Some scientists at NASA certainly think so, and it will be their continuing research, along with that of entrepreneurs and private companies around the world, that may make it possible.

sidewalks bring order to the chaos of dense urban life. In Hong Kong, for instance, an entire hillside neighborhood is focused on the Central Mid-Level Escalators—a 2,625-foot (800-meter) collage of moving sidewalks topped by a canopy and lined by open-air markets as well as apartment towers. The system opened in 1993 and quickly became a tool of daily life, offering a predictable, smooth alternative to automobiles.

In design terms, and in the abstract, this sort of gliding vantage point is a tremendous opportunity. And occasionally it has been exploited; the best-known example might be the moving sidewalk at Chicago’s O’Hare International Airport, where travelers moving between two United Airlines concourses are pulled through 870 feet of soft darkness framed by ambient music and slow skittering neon.

More often, though, the real-world dictates of budget triumph over artistic gestures.

That’s the experience of Elizabeth Diller, who with her husband Ricardo Scofidio forms one of the most lauded teams of new talent in American architecture. In their original design for the Institute of Contemporary Arts in Boston, the pair envisioned a single-run escalator slicing upwards through the building, popping out of the lobby into open air and then cutting diagonally through galleries. Problem is, that lone ingenious stroke was too expensive. And when they tried breaking it up—stopping on this or that floor—the effect wasn’t the same.

“That little interruption was enough to change the feel from theatricality to feeling like a department store,” sighs Diller. “It could have been spectacular.” Instead, the ICA’s new home on the Boston waterfront is set to open in 2005 with a much different experience for visitors: they will move between floors in an oversized elevator with glass walls.

No, when escalator innovation occurs in the United States it is at the beck and call of commerce, same as it ever was. The moving sidewalks at O’Hare exist for a reason, for instance; travelers need to get from point A to point B. That’s also the case at big-box retailers such as Target or Ikea; as they look to place their huge stores in established suburbs, they find the land isn’t there to allow for infinite asphalt prairies. So parking spaces go on the roof or in the basement—and special escalators are ordered that can pull shopping carts up or down alongside customers on their way from the check-out line to the car.

And what happens when you change something that everyone takes for granted? Guess. “You’d see people get to them, look over the edge, wonder how they’d work and watch other people,” laughs Joe Bologna, an architect in Walnut Creek, California, recalling the arrival of a shopping cart escalator at the suburban city’s new Target. “They’d finally try it … and then it becomes cool.”

If history teaches anything, novelty will fade. People will take the convenience in stride. And even if something occasionally goes wrong, the response will be a societal shrug.

The day after the accident at Coors Field, Rockies fans again turned out en masse. They found all the escalators shut off for safety inspections—meaning a humid trek up 94 steps leading to the upper deck.

“I was wanting to use them tonight,” one man told a reporter for the Rocky Mountain News. “I was hoping it would happen again. It sounded like it might have been a fun ride.”

To grasp the modern possibilities of Reno’s endless conveyor, you’d need to go to Asia and see how escalators and moving sidewalks bring order to the chaos of dense urban life. In Hong Kong, for instance, an entire hillside neighborhood is focused on the Central Mid-Level Escalators—a 2,625-foot (800-meter) collage of moving sidewalks topped by a canopy and lined by open-air markets as well as apartment towers. The system opened in 1993 and quickly became a tool of daily life, offering a predictable, smooth alternative to automobiles.

In design terms, and in the abstract, this sort of gliding vantage point is a tremendous opportunity. And occasionally it has been exploited; the best-known example might be the moving sidewalk at Chicago’s O’Hare International Airport, where travelers moving between two United Airlines concourses are pulled through 870 feet of soft darkness framed by ambient music and slow skittering neon.

More often, though, the real-world dictates of budget triumph over artistic gestures.

That’s the experience of Elizabeth Diller, who with her husband Ricardo Scofidio forms one of the most lauded teams of new talent in American architecture. In their original design for the Institute of Contemporary Arts in Boston, the pair envisioned a single-run escalator slicing upwards through the building, popping out of the lobby into open air and then cutting diagonally through galleries. Problem is, that lone ingenious stroke was too expensive. And when they tried breaking it up—stopping on this or that floor—the effect wasn’t the same.

“That little interruption was enough to change the feel from theatricality to feeling like a department store,” sighs Diller. “It could have been spectacular.” Instead, the ICA’s new home on the
The Escalator in Art and Photography

by Julie Week

The Escalator in Art and Photography

At the beginning of the 20th century, escalators were an exciting new form of transportation machine. Charles Seeberger's step-type escalator, manufactured by the Otis Company in New York, won the Grand Prize at the Paris Exposition in 1900. At Coney Island's spectacular Luna Park, an escalator lifted passengers to Helio-Kletter, a thrilling new ride.

Escalator design, though, were still in flux. In 1898 American engineer Jesse Reno patented his “inclined elevator,” a type of conveyor belt pitched at a 25-degree angle, moving at 100 feet per minute. It had cleats rather than steps, and the story's illustration showed a young girl standing on an escalator without holding her mother's hand or the handrail, a picture suggesting an easy ride.

Assured of the machine's safety, people even tried to improve on the ride. In its story “A New Kind of Speed Mania,” the Brooklyn Eagle reported that, at a subway station in Brooklyn, most people—“young and old, fat and thin, weak and strong”—were running up the moving escalators, pushing aside individuals riding it the proper way—a sure sign of “American impatience and foolishness.”

Escalators were keeping pace with changing times, moving large numbers of people in a continuous flow—a useful feature not only in rapid transit stations but also in factories and multi-storied department stores. When Macy's opened its new store in Manhattan in 1902, it installed escalators up to the fifth floor. Early in the 20th century, theater owners, finding themselves competing with newly popular motion picture houses, installed escalators so that people could reach the cheaper balcony seats. Photographers and artists celebrated the appearance of escalators in stores and train stations in cities throughout the world, including Tokyo.

Photographers of the period captured the many advantages of this modern machine—though sometimes in an unintentionally humorous way. In an early photograph in an electricity book from 1905, customers crowd the steps of an escalator in a department store.

Looking through the windows of new transportation machines—from speeding trains to automobiles and airplanes—people experienced new ways of seeing, and escalators also were changing people's points of view. In department stores, escalators not only brought customers to the upper floors, they also let them see great displays of merchandise in a panoramic, bird's-eye view. Moving up or down, riders saw slowly-enfolding slices of space, shaped by the diagonal lines of the escalators' balustrades. In artist's paintings—and in advertisements and photographs—there is often an air of drama and excitement created by the sharp diagonals of the escalators and the spaces they define.

Escalators also transported people to a dramatic new view of the future. At the 1933 New York World's Fair held in Queens, a custom-made escalator moved crowds of visitors up to the towering Trylon. From there they continued on to the domed Perisphere where they saw designer Henry Dreyfuss' diorama, “Democracy,” with its vision of a perfect world.

In the 1910s, streamlining—

With its love of the aerodynamic features of airplanes—became a dominant style in American design, seen not only in American locomotives but in escalators, too. Designers like Eleanor LeMaire in 1936 used rounded balustrades and speed lines for the Otis Streamlined Escalator in a California department store (and Otis itself used a streamlined float complete with stylized sculptural figure and an escalator in a parade the year before the 1939 World's Fair).

Commercial artists helped endow department store escalators and their riders with sophistication and style, seen in Otis advertisements in the 1920s. In the 1930s, Otis' advertisement for its “Escal-Aire” design featured men and women glamorously clad in evening attire, tinted, and shimmering balustrades.

In the 1960s, Otis' advertisement for its “Escal-Aire” design featured men and women glamorously clad in evening attire, tinted, and shimmering balustrades.

In the 1960s, Otis' advertisement for its “Escal-Aire” design featured men and women glamorously clad in evening attire, tinted, and shimmering balustrades.

In the 1960s, Otis' advertisement for its “Escal-Aire” design featured men and women glamorously clad in evening attire, tinted, and shimmering balustrades.

In the 1960s, Otis' advertisement for its “Escal-Aire” design featured men and women glamorously clad in evening attire, tinted, and shimmering balustrades.

In the 1960s, Otis' advertisement for its “Escal-Aire” design featured men and women glamorously clad in evening attire, tinted, and shimmering balustrades.

In the 1960s, Otis' advertisement for its “Escal-Aire” design featured men and women glamorously clad in evening attire, tinted, and shimmering balustrades.

In the 1960s, Otis' advertisement for its “Escal-Aire” design featured men and women glamorously clad in evening attire, tinted, and shimmering balustrades.

In the 1960s, Otis' advertisement for its “Escal-Aire” design featured men and women glamorously clad in evening attire, tinted, and shimmering balustrades.

In the 1960s, Otis' advertisement for its “Escal-Aire” design featured men and women glamorously clad in evening attire, tinted, and shimmering balustrades.

In the 1960s, Otis' advertisement for its “Escal-Aire” design featured men and women glamorously clad in evening attire, tinted, and shimmering balustrades.

In the 1960s, Otis' advertisement for its “Escal-Aire” design featured men and women glamorously clad in evening attire, tinted, and shimmering balustrades.

In the 1960s, Otis' advertisement for its “Escal-Aire” design featured men and women glamorously clad in evening attire, tinted, and shimmering balustrades.

In the 1960s, Otis' advertisement for its “Escal-Aire” design featured men and women glamorously clad in evening attire, tinted, and shimmering balustrades.

In the 1960s, Otis' advertisement for its “Escal-Aire” design featured men and women glamorously clad in evening attire, tinted, and shimmering balustrades.

In the 1960s, Otis' advertisement for its “Escal-Aire” design featured men and women glamorously clad in evening attire, tinted, and shimmering balustrades.

In the 1960s, Otis' advertisement for its “Escal-Aire” design featured men and women glamorously clad in evening attire, tinted, and shimmering balustrades.

In the 1960s, Otis' advertisement for its “Escal-Aire” design featured men and women glamorously clad in evening attire, tinted, and shimmering balustrades.
For American photorealist painter Richard Estes, it was not the escalator’s steady movement that fascinated him but the elegance of the machine. In his painting Escalator (1970), Estes made the machine itself the center of attention, capturing in precise detail and close focus the escalator’s rhythmic curving lines and mirrored metallic surfaces. There are no people in his painting, just the escalator’s steps and gleaming balustrades. The entry yawns wide, inviting us to take a ride on this smoothly swooping machine.

Photographers in the 1970s and the years ahead captured yet another aspect of escalators—the wit and playfulness of contemporary escalator designs, like the exterior escalators in Renzo Piano and Richard Rogers’ design for the Pompidou Center in Paris. Journeying to exhibits in the Musée National d’Art Moderne housed in the center, visitors see a panoramic view of Paris through the escalators’ curving glass-covered space.

Since the 1990s, photographers have captured the continuing exuberance in escalator design—presenting images of escalators revealing their fluidity and grace. Escalator designs are also becoming sculptural in their own right and playful as well, seen in the spiraling escalators at the San Francisco Centre and Mitsubishi’s large yellow dragon-shaped escalator taking visitors to the top of the dam at the Long Quing Xin Gorge northwest of Beijing. Manufacturers promise still more innovations as they continue to add artfulness to today’s escalator designs.

Building America Online Exhibition Wins Award

The National Building Museum’s groundbreaking “Virtual Exhibition,” Building America, received a Silver Muse Award from the American Association of Museums at its 2003 annual meeting in Portland. The Muse Awards program, now in its 14th year, recognizes “excellence in all varieties of media programs produced by or for museums.”

In praising Building America, the jury said: “This Flash site was exquisitely designed and executed. The content, image quality, audio, design, animation and interface were all of very high quality. . . This is an example of a well-conceived, rich media experience that is compelling. Production that combines and nurtures all these elements is rare.”

Building America, which is accessible through the Museum’s main Web site, was supported by the Museum’s trustees, as well as by the Morris and Gwendolyn Cafritz Foundation.

Museum Introduces Spotlight Web Page

The Museum has launched an expanded Spotlight on Design Web page listing scheduled lectures, along with an easy-to-use online registration system. The page also lists past lecturers, with links to speakers’ own Web sites and, when available, transcripts or summaries of their presentations. You can access the expanded page through the Museum’s main Web site at www.nbm.org.

The Spotlight on Design lecture series and the expanded Web page are sponsored by Lafarge, the world leader in building materials with operations in 75 countries and sales in excess of $13.9 billion.

With “the whirling life” of fast-moving automobiles and trains, the Italian Futurist painters in the early decades of the 20th century often used the fragmented Cubist style of geometric abstractions and overlapping planes. Years later, when America was in the midst of World War II, Van Esselstyn herself drew on Cubist and Futurist idioms for her own paintings of escalators and transportation machines.

Using small brushes and egg tempera, the artist in her painting Escalator (1944) used Cubist-inspired fragmented forms to create a scene of people rushing through a small city bus terminal—a space filled with the dramatic diagonals of escalators and streams of light from the window above.

For American photorealist painter Richard Estes, it was not the escalator’s steady movement that fascinated him but the elegance of the machine. In his painting Escalator (1970), Estes made the machine itself the center of attention, capturing in precise detail and close focus the escalator’s rhythmic curving lines and mirrored metallic surfaces. There are no people in his painting, just the escalator’s steps and gleaming balustrades. The entry yawns wide, inviting us to take a ride on this smoothly swooping machine.

Photographers in the 1970s and the years ahead captured yet another aspect of escalators—the wit and playfulness of contemporary escalator designs, like the exterior escalators in Renzo Piano and Richard Rogers’ design for the Pompidou Center in Paris. Journeying to exhibits in the Musée National d’Art Moderne housed in the center, visitors see a panoramic view of Paris through the escalators’ curving glass-covered space.

Since the 1990s, photographers have captured the continuing exuberance in escalator design—presenting images of escalators revealing their fluidity and grace. Escalator designs are also becoming sculptural in their own right and playful as well, seen in the spiraling escalators at the San Francisco Centre and Mitsubishi’s large yellow dragon-shaped escalator taking visitors to the top of the dam at the Long Quing Xin Gorge northwest of Beijing. Manufacturers promise still more innovations as they continue to add artfulness to today’s escalator designs.

Building America Online Exhibition Wins Award

The National Building Museum’s groundbreaking “Virtual Exhibition,” Building America, received a Silver Muse Award from the American Association of Museums at its 2003 annual meeting in Portland. The Muse Awards program, now in its 14th year, recognizes “excellence in all varieties of media programs produced by or for museums.”

In praising Building America, the jury said: “This Flash site was exquisitely designed and executed. The content, image quality, audio, design, animation and interface were all of very high quality. . . This is an example of a well-conceived, rich media experience that is compelling. Production that combines and nurtures all these elements is rare.”

Building America, which is accessible through the Museum’s main Web site, was supported by the Museum’s trustees, as well as by the Morris and Gwendolyn Cafritz Foundation.

Museum Introduces Spotlight Web Page

The Museum has launched an expanded Spotlight on Design Web page listing scheduled lectures, along with an easy-to-use online registration system. The page also lists past lecturers, with links to speakers’ own Web sites and, when available, transcripts or summaries of their presentations. You can access the expanded page through the Museum’s main Web site at www.nbm.org.

The Spotlight on Design lecture series and the expanded Web page are sponsored by Lafarge, the world leader in building materials with operations in 75 countries and sales in excess of $13.9 billion.

With “the whirling life” of fast-moving automobiles and trains, the Italian Futurist painters in the early decades of the 20th century often used the fragmented Cubist style of geometric abstractions and overlapping planes. Years later, when America was in the midst of World War II, Van Esselstyn herself drew on Cubist and Futurist idioms for her own paintings of escalators and transportation machines.

Using small brushes and egg tempera, the artist in her painting Escalator (1944) used Cubist-inspired fragmented forms to create a scene of people rushing through a small city bus terminal—a space filled with the dramatic diagonals of escalators and streams of light from the window above.

For American photorealist painter Richard Estes, it was not the escalator’s steady movement that fascinated him but the elegance of the machine. In his painting Escalator (1970), Estes made the machine itself the center of attention, capturing in precise detail and close focus the escalator’s rhythmic curving lines and mirrored metallic surfaces. There are no people in his painting, just the escalator’s steps and gleaming balustrades. The entry yawns wide, inviting us to take a ride on this smoothly swooping machine.

Photographers in the 1970s and the years ahead captured yet another aspect of escalators—the wit and playfulness of contemporary escalator designs, like the exterior escalators in Renzo Piano and Richard Rogers’ design for the Pompidou Center in Paris. Journeying to exhibits in the Musée National d’Art Moderne housed in the center, visitors see a panoramic view of Paris through the escalators’ curving glass-covered space.

Since the 1990s, photographers have captured the continuing exuberance in escalator design—presenting images of escalators revealing their fluidity and grace. Escalator designs are also becoming sculptural in their own right and playful as well, seen in the spiraling escalators at the San Francisco Centre and Mitsubishi’s large yellow dragon-shaped escalator taking visitors to the top of the dam at the Long Quing Xin Gorge northwest of Beijing. Manufacturers promise still more innovations as they continue to add artfulness to today’s escalator designs.

Building America Online Exhibition Wins Award

The National Building Museum’s groundbreaking “Virtual Exhibition,” Building America, received a Silver Muse Award from the American Association of Museums at its 2003 annual meeting in Portland. The Muse Awards program, now in its 14th year, recognizes “excellence in all varieties of media programs produced by or for museums.”

In praising Building America, the jury said: “This Flash site was exquisitely designed and executed. The content, image quality, audio, design, animation and interface were all of very high quality. . . This is an example of a well-conceived, rich media experience that is compelling. Production that combines and nurtures all these elements is rare.”

Building America, which is accessible through the Museum’s main Web site, was supported by the Museum’s trustees, as well as by the Morris and Gwendolyn Cafritz Foundation.

Museum Introduces Spotlight Web Page

The Museum has launched an expanded Spotlight on Design Web page listing scheduled lectures, along with an easy-to-use online registration system. The page also lists past lecturers, with links to speakers’ own Web sites and, when available, transcripts or summaries of their presentations. You can access the expanded page through the Museum’s main Web site at www.nbm.org.

The Spotlight on Design lecture series and the expanded Web page are sponsored by Lafarge, the world leader in building materials with operations in 75 countries and sales in excess of $13.9 billion.

With “the whirling life” of fast-moving automobiles and trains, the Italian Futurist painters in the early decades of the 20th century often used the fragmented Cubist style of geometric abstractions and overlapping planes. Years later, when America was in the midst of World War II, Van Esselstyn herself drew on Cubist and Futurist idioms for her own paintings of escalators and transportation machines.

Using small brushes and egg tempera, the artist in her painting Escalator (1944) used Cubist-inspired fragmented forms to create a scene of people rushing through a small city bus terminal—a space filled with the dramatic diagonals of escalators and streams of light from the window above.
New Trustee Joins Board

The Museum’s Board of Trustees recently elected ROBERT W. HOLLEYMAN, II as its newest member. Holleyman is president and chief executive officer of the Business Software Alliance, which advocates global policies and programs that promote innovation and continuing growth in the digital economy. He has been recognized by several organizations and publications as one of the most influential lobbyists for the high-tech industry. Before joining BSA in 1990, Holleyman spent eight years in senior staff positions in the U.S. Senate. He holds a bachelor’s degree in political science from Trinity University in San Antonio, and a law degree from Louisiana State University.

Support the Museum

Choose National Building Museum #8662!

Did you know that you can support the builders, planners, architects, and designers of tomorrow through your workplace giving campaign?

Each year we involve thousands of local students in educational activities ranging from city planning and urban design to building bridges and constructing houses. If you are taking part in the United Way or Combined Federal Campaign, you can support our youth education programs by making a gift to the National Building Museum #8662.

To learn more about our education programs and how you can get involved, please contact Shar Taylor, Director of Development for Education, at 202.272.2448, extension 3905, or via email at staylor@nbm.org.

The Corinthians

The Museum takes this opportunity to recognize all current members of The Corinthians, who provide, unusual, unrestricted support for its programs. We thank all of them for their loyal commitment to the National Building Museum.

(as of July 31, 2019)
The National Building Museum thanks United Technologies Corporation and Otis Elevator Company for generously supporting our exhibition and publication.

The Museum thanks the individuals, companies, associations, and agencies listed here for gifts of $250 or more received between July 2003 and August 2004.

Thank you!
MYSTERY BUILDING

The “Mystery Building” is back by popular demand, and will appear in future issues as space permits.

The issue’s mystery building is a little off the beaten path, but is worthy of a special trip for lovers of modernism. Can you identify the building, its location, and its architect? The next issue of Blueprints will list the names of all readers who submit correct answers.

You may respond to: Mystery Building, National Building Museum, 401 F Street NW, Washington, DC 20001.

Correction

In the article about the Hedrich Blessing exhibition in the summer issue of Blueprints, the credit for the photograph of the U.S. Air Force Academy was incomplete. The photographer was Bill Hedrich and the photograph was taken in 1959.